作为Executor框架中最核心的类,ThreadPoolExecutor代表着鼎鼎大名的线程池,它给了我们足够的理由来弄清楚它。
下面我们就通过源码来一步一步弄清楚它。
内部状态
线程有五种状态:新建,就绪,运行,阻塞,死亡,线程池同样有五种状态:Running, SHUTDOWN, STOP, TIDYING, TERMINATED。
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));private static final int COUNT_BITS = Integer.SIZE - 3;private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bitsprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctlprivate static int runStateOf(int c) { return c & ~CAPACITY; }private static int workerCountOf(int c) { return c & CAPACITY; }private static int ctlOf(int rs, int wc) { return rs | wc; }
变量ctl定义为AtomicInteger ,其功能非常强大,记录了“线程池中的任务数量”和“线程池的状态”两个信息。共32位,其中高3位表示"线程池状态",低29位表示"线程池中的任务数量"。
RUNNING -- 对应的高3位值是111。SHUTDOWN -- 对应的高3位值是000。STOP -- 对应的高3位值是001。TIDYING -- 对应的高3位值是010。TERMINATED -- 对应的高3位值是011。
RUNNING:处于RUNNING状态的线程池能够接受新任务,以及对新添加的任务进行处理。
SHUTDOWN:处于SHUTDOWN状态的线程池不可以接受新任务,但是可以对已添加的任务进行处理。
STOP:处于STOP状态的线程池不接收新任务,不处理已添加的任务,并且会中断正在处理的任务。
TIDYING:当所有的任务已终止,ctl记录的"任务数量"为0,线程池会变为TIDYING状态。当线程池变为TIDYING状态时,会执行钩子函数terminated()。terminated()在ThreadPoolExecutor类中是空的,若用户想在线程池变为TIDYING时,进行相应的处理;可以通过重载terminated()函数来实现。
TERMINATED:线程池彻底终止的状态。
各个状态的转换如下:
创建线程池
我们可以通过ThreadPoolExecutor构造函数来创建一个线程池:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueueworkQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler;}
共有七个参数,每个参数含义如下:
corePoolSize
线程池中核心线程的数量。当提交一个任务时,线程池会新建一个线程来执行任务,直到当前线程数等于corePoolSize。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有基本线程。
maximumPoolSize
线程池中允许的最大线程数。线程池的阻塞队列满了之后,如果还有任务提交,如果当前的线程数小于maximumPoolSize,则会新建线程来执行任务。注意,如果使用的是无界队列,该参数也就没有什么效果了。
keepAliveTime
线程空闲的时间。线程的创建和销毁是需要代价的。线程执行完任务后不会立即销毁,而是继续存活一段时间:keepAliveTime。默认情况下,该参数只有在线程数大于corePoolSize时才会生效。
unit
keepAliveTime的单位。TimeUnit
workQueue
用来保存等待执行的任务的阻塞队列,等待的任务必须实现Runnable接口。我们可以选择如下几种:
-
ArrayBlockingQueue:基于数组结构的有界阻塞队列,FIFO。【死磕Java并发】----J.U.C之阻塞队列:ArrayBlockingQueue
-
LinkedBlockingQueue:基于链表结构的有界阻塞队列,FIFO。
-
SynchronousQueue:不存储元素的阻塞队列,每个插入操作都必须等待一个移出操作,反之亦然。【死磕Java并发】----J.U.C之阻塞队列:SynchronousQueue
-
PriorityBlockingQueue:具有优先界别的阻塞队列。【死磕Java并发】----J.U.C之阻塞队列:PriorityBlockingQueue
threadFactory
用于设置创建线程的工厂。该对象可以通过Executors.defaultThreadFactory(),如下:
public static ThreadFactory defaultThreadFactory() { return new DefaultThreadFactory();}
返回的是DefaultThreadFactory对象,源码如下:
static class DefaultThreadFactory implements ThreadFactory { private static final AtomicInteger poolNumber = new AtomicInteger(1); private final ThreadGroup group; private final AtomicInteger threadNumber = new AtomicInteger(1); private final String namePrefix; DefaultThreadFactory() { SecurityManager s = System.getSecurityManager(); group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup(); namePrefix = "pool-" + poolNumber.getAndIncrement() + "-thread-"; } public Thread newThread(Runnable r) { Thread t = new Thread(group, r,namePrefix + threadNumber.getAndIncrement(),0); if (t.isDaemon()) t.setDaemon(false); if (t.getPriority() != Thread.NORM_PRIORITY) t.setPriority(Thread.NORM_PRIORITY); return t; } }
ThreadFactory的左右就是提供创建线程的功能的线程工厂。他是通过newThread()方法提供创建线程的功能,newThread()方法创建的线程都是“非守护线程”而且“线程优先级都是Thread.NORM_PRIORITY”。
handler
RejectedExecutionHandler,线程池的拒绝策略。所谓拒绝策略,是指将任务添加到线程池中时,线程池拒绝该任务所采取的相应策略。当向线程池中提交任务时,如果此时线程池中的线程已经饱和了,而且阻塞队列也已经满了,则线程池会选择一种拒绝策略来处理该任务。
线程池提供了四种拒绝策略:
-
AbortPolicy:直接抛出异常,默认策略;
-
CallerRunsPolicy:用调用者所在的线程来执行任务;
-
DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
-
DiscardPolicy:直接丢弃任务;
当然我们也可以实现自己的拒绝策略,例如记录日志等等,实现RejectedExecutionHandler接口即可。
线程池
Executor框架提供了三种线程池,他们都可以通过工具类Executors来创建。
FixedThreadPool
FixedThreadPool,可重用固定线程数的线程池,其定义如下:
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue());}
corePoolSize 和 maximumPoolSize都设置为创建FixedThreadPool时指定的参数nThreads,意味着当线程池满时且阻塞队列也已经满时,如果继续提交任务,则会直接走拒绝策略,该线程池不会再新建线程来执行任务,而是直接走拒绝策略。FixedThreadPool使用的是默认的拒绝策略,即AbortPolicy,则直接抛出异常。
keepAliveTime设置为0L,表示空闲的线程会立刻终止。
workQueue则是使用LinkedBlockingQueue,但是没有设置范围,那么则是最大值(Integer.MAX_VALUE),这基本就相当于一个无界队列了。使用该“无界队列”则会带来哪些影响呢?当线程池中的线程数量等于corePoolSize 时,如果继续提交任务,该任务会被添加到阻塞队列workQueue中,当阻塞队列也满了之后,则线程池会新建线程执行任务直到maximumPoolSize。由于FixedThreadPool使用的是“无界队列”LinkedBlockingQueue,那么maximumPoolSize参数无效,同时指定的拒绝策略AbortPolicy也将无效。而且该线程池也不会拒绝提交的任务,如果客户端提交任务的速度快于任务的执行,那么keepAliveTime也是一个无效参数。
其运行图如下(参考《Java并发编程的艺术》):
SingleThreadExecutor
SingleThreadExecutor是使用单个worker线程的Executor,定义如下:
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue()));}
作为单一worker线程的线程池,SingleThreadExecutor把corePool和maximumPoolSize均被设置为1,和FixedThreadPool一样使用的是无界队列LinkedBlockingQueue,所以带来的影响和FixedThreadPool一样。
CachedThreadPool
CachedThreadPool是一个会根据需要创建新线程的线程池 ,他定义如下:
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue());}
CachedThreadPool的corePool为0,maximumPoolSize为Integer.MAXVALUE,这就意味着所有的任务一提交就会加入到阻塞队列中。keepAliveTime这是为60L,unit设置为TimeUnit.SECONDS,意味着空闲线程等待新任务的最长时间为60秒,空闲线程超过60秒后将会被终止。阻塞队列采用的SynchronousQueue,而我们在【死磕Java并发】----J.U.C之阻塞队列:SynchronousQueue中了解到SynchronousQueue是一个没有元素的阻塞队列,加上corePool = 0 ,maximumPoolSize = Integer.MAXVALUE,这样就会存在一个问题,如果主线程提交任务的速度远远大于CachedThreadPool的处理速度,则CachedThreadPool会不断地创建新线程来执行任务,这样有可能会导致系统耗尽CPU和内存资源,所以在使用该线程池是,一定要注意控制并发的任务数,否则创建大量的线程可能导致严重的性能问题。
任务提交
线程池根据业务不同的需求提供了两种方式提交任务:Executor.execute()、ExecutorService.submit()。其中ExecutorService.submit()可以获取该任务执行的Future。 我们以Executor.execute()为例,来看看线程池的任务提交经历了那些过程。
定义:
public interface Executor { void execute(Runnable command);}
ThreadPoolExecutor提供实现:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command);}
执行流程如下:
-
如果线程池当前线程数小于corePoolSize,则调用addWorker创建新线程执行任务,成功返回true,失败执行步骤2。
-
如果线程池处于RUNNING状态,则尝试加入阻塞队列,如果加入阻塞队列成功,则尝试进行Double Check,如果加入失败,则执行步骤3。
-
如果线程池不是RUNNING状态或者加入阻塞队列失败,则尝试创建新线程直到maxPoolSize,如果失败,则调用reject()方法运行相应的拒绝策略。
在步骤2中如果加入阻塞队列成功了,则会进行一个Double Check的过程。Double Check过程的主要目的是判断加入到阻塞队里中的线程是否可以被执行。如果线程池不是RUNNING状态,则调用remove()方法从阻塞队列中删除该任务,然后调用reject()方法处理任务。否则需要确保还有线程执行。
addWorker 当线程中的当前线程数小于corePoolSize,则调用addWorker()创建新线程执行任务,当前线程数则是根据ctl变量来获取的,调用workerCountOf(ctl)获取低29位即可:
private static int workerCountOf(int c) { return c & CAPACITY; }
addWorker(Runnable firstTask, boolean core)方法用于创建线程执行任务,源码如下:
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); // 获取当前线程状态 int rs = runStateOf(c); if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; // 内层循环,worker + 1 for (;;) { // 线程数量 int wc = workerCountOf(c); // 如果当前线程数大于线程最大上限CAPACITY return false // 若core == true,则与corePoolSize 比较,否则与maximumPoolSize ,大于 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; // worker + 1,成功跳出retry循环 if (compareAndIncrementWorkerCount(c)) break retry; // CAS add worker 失败,再次读取ctl c = ctl.get(); // 如果状态不等于之前获取的state,跳出内层循环,继续去外层循环判断 if (runStateOf(c) != rs) continue retry; } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { // 新建线程:Worker w = new Worker(firstTask); // 当前线程 final Thread t = w.thread; if (t != null) { // 获取主锁:mainLock final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 线程状态 int rs = runStateOf(ctl.get());// rs < SHUTDOWN ==> 线程处于RUNNING状态 // 或者线程处于SHUTDOWN状态,且firstTask == null(可能是workQueue中仍 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { // 当前线程已经启动,抛出异常 if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); // workers是一个HashSetworkers.add(w); // 设置最大的池大小largestPoolSize,workerAdded设置为true int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { // 释放锁 mainLock.unlock(); } // 启动线程 if (workerAdded) { t.start(); workerStarted = true; } } } finally { // 线程启动失败 if (! workerStarted) addWorkerFailed(w); } return workerStarted;}
- 判断当前线程是否可以添加任务,如果可以则进行下一步,否则return false;
- rs >= SHUTDOWN ,表示当前线程处于SHUTDOWN ,STOP、TIDYING、TERMINATED状态
- rs == SHUTDOWN , firstTask != null时不允许添加线程,因为线程处于SHUTDOWN 状态,不允许添加任务
- rs == SHUTDOWN , firstTask == null,但workQueue.isEmpty() == true,不允许添加线程,因为firstTask == null是为了添加一个没有任务的线程然后再从workQueue中获取任务的,如果workQueue == null,则说明添加的任务没有任何意义。
- 内嵌循环,通过CAS worker + 1
- 获取主锁mailLock,如果线程池处于RUNNING状态获取处于SHUTDOWN状态且 firstTask == null,则将任务添加到workers Queue中,然后释放主锁mainLock,然后启动线程,然后return true,如果中途失败导致workerStarted= false,则调用addWorkerFailed()方法进行处理。
在这里需要好好理论addWorker中的参数,在execute()方法中,有三处调用了该方法:
-
第一次:
workerCountOf(c)<corePoolSize==>addWorker(command,true)
,这个很好理解,当然线程池的线程数量小于 corePoolSize ,则新建线程执行任务即可,在执行过程core == true,内部与corePoolSize比较即可。 -
第二次:加入阻塞队列进行Double Check时,
elseif(workerCountOf(recheck)==0)==>addWorker(null,false)
。如果线程池中的线程==0,按照道理应该该任务应该新建线程执行任务,但是由于已经该任务已经添加到了阻塞队列,那么就在线程池中新建一个空线程,然后从阻塞队列中取线程即可。 -
第三次:线程池不是RUNNING状态或者加入阻塞队列失败:
elseif(!addWorker(command,false))
,这里core == fase,则意味着是与maximumPoolSize比较。
在新建线程执行任务时,将讲Runnable包装成一个Worker,Woker为ThreadPoolExecutor的内部类
Woker内部类
Woker的源码如下:
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { private static final long serialVersionUID = 6138294804551838833L; // task 的thread final Thread thread; // 运行的任务task Runnable firstTask; volatile long completedTasks; Worker(Runnable firstTask) { //设置AQS的同步状态private volatile int state,是一个计数器,大于0代表锁已经被 setState(-1); this.firstTask = firstTask; // 利用ThreadFactory和 Worker这个Runnable创建的线程对象 this.thread = getThreadFactory().newThread(this); } // 任务执行 public void run() { runWorker(this); }}
从Worker的源码中我们可以看到Woker继承AQS,实现Runnable接口,所以可以认为Worker既是一个可以执行的任务,也可以达到获取锁释放锁的效果。这里继承AQS主要是为了方便线程的中断处理。这里注意两个地方:构造函数、run()。构造函数主要是做三件事:1.设置同步状态state为-1,同步状态大于0表示就已经获取了锁,2.设置将当前任务task设置为firstTask,3.利用Worker本身对象this和ThreadFactory创建线程对象。
当线程thread启动(调用start()方法)时,其实就是执行Worker的run()方法,内部调用runWorker()。
runWorker
final void runWorker(Worker w) { // 当前线程 Thread wt = Thread.currentThread(); // 要执行的任务 Runnable task = w.firstTask; w.firstTask = null; // 释放锁,运行中断 w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { // worker 获取锁 w.lock(); // 确保只有当线程是stoping时,才会被设置为中断,否则清楚中断标示 // 如果线程池状态 >= STOP ,且当前线程没有设置中断状态,则wt.interrupt() // 如果线程池状态 < STOP,但是线程已经中断了,再次判断线程池是否 >= STOP,如果是 wt.interrupt() if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { // 自定义方法 beforeExecute(wt, task); Throwable thrown = null; try { // 执行任务 task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; // 完成任务数 + 1 w.completedTasks++; // 释放锁 w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); }}
运行流程
-
根据worker获取要执行的任务task,然后调用unlock()方法释放锁,这里释放锁的主要目的在于中断,因为在new Worker时,设置的state为-1,调用unlock()方法可以将state设置为0,这里主要原因就在于interruptWorkers()方法只有在state >= 0时才会执行;
-
通过getTask()获取执行的任务,调用task.run()执行,当然在执行之前会调用worker.lock()上锁,执行之后调用worker.unlock()放锁;
-
在任务执行前后,可以根据业务场景自定义beforeExecute() 和 afterExecute()方法,则两个方法在ThreadPoolExecutor中是空实现;
-
如果线程执行完成,则会调用getTask()方法从阻塞队列中获取新任务,如果阻塞队列为空,则根据是否超时来判断是否需要阻塞;
-
task == null或者抛出异常(beforeExecute()、task.run()、afterExecute()均有可能)导致worker线程终止,则调用processWorkerExit()方法处理worker退出流程。
getTask()
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { // 线程池状态 int c = ctl.get(); int rs = runStateOf(c); // 线程池中状态 >= STOP 或者 线程池状态 == SHUTDOWN且阻塞队列为空,则worker - 1,return null if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // 判断是否需要超时控制 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { // 从阻塞队列中获取task // 如果需要超时控制,则调用poll(),否则调用take() Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } }}
timed == true,调用poll()方法,如果在keepAliveTime时间内还没有获取task的话,则返回null,继续循环。timed == false,则调用take()方法,该方法为一个阻塞方法,没有任务时会一直阻塞挂起,直到有任务加入时对该线程唤醒,返回任务。
在runWorker()方法中,无论最终结果如何,都会执行processWorkerExit()方法对worker进行退出处理。
processWorkerExit()
private void processWorkerExit(Worker w, boolean completedAbruptly) { // true:用户线程运行异常,需要扣减 // false:getTask方法中扣减线程数量 if (completedAbruptly) decrementWorkerCount(); // 获取主锁 final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { completedTaskCount += w.completedTasks; // 从HashSet中移出worker workers.remove(w); } finally { mainLock.unlock(); } // 有worker线程移除,可能是最后一个线程退出需要尝试终止线程池 tryTerminate(); int c = ctl.get(); // 如果线程为running或shutdown状态,即tryTerminate()没有成功终止线程池,则判断是否有必要一个worker if (runStateLessThan(c, STOP)) { // 正常退出,计算min:需要维护的最小线程数量 if (!completedAbruptly) { // allowCoreThreadTimeOut 默认false:是否需要维持核心线程的数量 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; // 如果min ==0 或者workerQueue为空,min = 1 if (min == 0 && ! workQueue.isEmpty()) min = 1; // 如果线程数量大于最少数量min,直接返回,不需要新增线程 if (workerCountOf(c) >= min) return; // replacement not needed } // 添加一个没有firstTask的worker addWorker(null, false); }}
首先completedAbruptly的值来判断是否需要对线程数-1处理,如果completedAbruptly == true,说明在任务运行过程中出现了异常,那么需要进行减1处理,否则不需要,因为减1处理在getTask()方法中处理了。然后从HashSet中移出该worker,过程需要获取mainlock。然后调用tryTerminate()方法处理,该方法是对最后一个线程退出做终止线程池动作。如果线程池没有终止,那么线程池需要保持一定数量的线程,则通过addWorker(null,false)新增一个空的线程。
addWorkerFailed()
在addWorker()方法中,如果线程t==null,或者在add过程出现异常,会导致workerStarted == false,那么在最后会调用addWorkerFailed()方法:
private void addWorkerFailed(Worker w) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 从HashSet中移除该worker if (w != null) workers.remove(w); // 线程数 - 1 decrementWorkerCount(); // 尝试终止线程 tryTerminate(); } finally { mainLock.unlock(); }}
整个逻辑显得比较简单。
tryTerminate()
当线程池涉及到要移除worker时候都会调用tryTerminate(),该方法主要用于判断线程池中的线程是否已经全部移除了,如果是的话则关闭线程池。
final void tryTerminate() { for (;;) { int c = ctl.get(); // 线程池处于Running状态 // 线程池已经终止了 // 线程池处于ShutDown状态,但是阻塞队列不为空 if (isRunning(c) || runStateAtLeast(c, TIDYING) || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; // 执行到这里,就意味着线程池要么处于STOP状态,要么处于SHUTDOWN且阻塞队列为空 // 这时如果线程池中还存在线程,则会尝试中断线程 if (workerCountOf(c) != 0) { // /线程池还有线程,但是队列没有任务了,需要中断唤醒等待任务的线程 // (runwoker的时候首先就通过w.unlock设置线程可中断,getTask最后面的catch处理中断) interruptIdleWorkers(ONLY_ONE); return; } final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // 尝试终止线程池 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { terminated(); } finally { // 线程池状态转为TERMINATED ctl.set(ctlOf(TERMINATED, 0)); termination.signalAll(); } return; } } finally { mainLock.unlock(); } }}
在关闭线程池的过程中,如果线程池处于STOP状态或者处于SHUDOWN状态且阻塞队列为null,则线程池会调用interruptIdleWorkers()方法中断所有线程,注意ONLY_ONE== true,表示仅中断一个线程。
interruptIdleWorkers
private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) { Thread t = w.thread; if (!t.isInterrupted() && w.tryLock()) { try { t.interrupt(); } catch (SecurityException ignore) { } finally { w.unlock(); } } if (onlyOne) break; } } finally { mainLock.unlock(); }}
onlyOne==true仅终止一个线程,否则终止所有线程。
线程终止
线程池ThreadPoolExecutor提供了shutdown()和shutDownNow()用于关闭线程池。
shutdown():按过去执行已提交任务的顺序发起一个有序的关闭,但是不接受新任务。
shutdownNow() :尝试停止所有的活动执行任务、暂停等待任务的处理,并返回等待执行的任务列表。
shutdown
public void shutdown() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); // 推进线程状态 advanceRunState(SHUTDOWN); // 中断空闲的线程 interruptIdleWorkers(); // 交给子类实现 onShutdown(); } finally{ mainLock.unlock(); } tryTerminate();}
shutdownNow
public ListshutdownNow() { List tasks; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { checkShutdownAccess(); advanceRunState(STOP); // 中断所有线程 interruptWorkers(); // 返回等待执行的任务列表 tasks = drainQueue(); } finally { mainLock.unlock(); } tryTerminate(); return tasks;}
与shutdown不同,shutdownNow会调用interruptWorkers()方法中断所有线程。
private void interruptWorkers() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { for (Worker w : workers) w.interruptIfStarted(); } finally { mainLock.unlock(); }}
同时会调用drainQueue()方法返回等待执行到任务列表。
private ListdrainQueue() { BlockingQueue q = workQueue; ArrayList taskList = new ArrayList (); q.drainTo(taskList); if (!q.isEmpty()) { for (Runnable r : q.toArray(new Runnable[0])) { if (q.remove(r)) taskList.add(r); } } return taskList;}
(全文完)
-------------------------------------------------
来源